Extensions 1→N→G→Q→1 with N=C2×C4 and Q=S3×C32

Direct product G=N×Q with N=C2×C4 and Q=S3×C32
dρLabelID
S3×C6×C12144S3xC6xC12432,701

Semidirect products G=N:Q with N=C2×C4 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(S3×C32) = C32×D6⋊C4φ: S3×C32/C33C2 ⊆ Aut C2×C4144(C2xC4):1(S3xC3^2)432,474
(C2×C4)⋊2(S3×C32) = C3×C6×D12φ: S3×C32/C33C2 ⊆ Aut C2×C4144(C2xC4):2(S3xC3^2)432,702
(C2×C4)⋊3(S3×C32) = C32×C4○D12φ: S3×C32/C33C2 ⊆ Aut C2×C472(C2xC4):3(S3xC3^2)432,703

Non-split extensions G=N.Q with N=C2×C4 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(S3×C32) = C32×Dic3⋊C4φ: S3×C32/C33C2 ⊆ Aut C2×C4144(C2xC4).1(S3xC3^2)432,472
(C2×C4).2(S3×C32) = C32×C4.Dic3φ: S3×C32/C33C2 ⊆ Aut C2×C472(C2xC4).2(S3xC3^2)432,470
(C2×C4).3(S3×C32) = C32×C4⋊Dic3φ: S3×C32/C33C2 ⊆ Aut C2×C4144(C2xC4).3(S3xC3^2)432,473
(C2×C4).4(S3×C32) = C3×C6×Dic6φ: S3×C32/C33C2 ⊆ Aut C2×C4144(C2xC4).4(S3xC3^2)432,700
(C2×C4).5(S3×C32) = C3×C6×C3⋊C8central extension (φ=1)144(C2xC4).5(S3xC3^2)432,469
(C2×C4).6(S3×C32) = Dic3×C3×C12central extension (φ=1)144(C2xC4).6(S3xC3^2)432,471

׿
×
𝔽